Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

Identifieur interne : 002E54 ( Main/Exploration ); précédent : 002E53; suivant : 002E55

Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

Auteurs : Sergei A. Filichkin [États-Unis] ; Ghislain Breton ; Henry D. Priest ; Palitha Dharmawardhana ; Pankaj Jaiswal ; Samuel E. Fox ; Todd P. Michael ; Joanne Chory ; Steve A. Kay ; Todd C. Mockler

Source :

RBID : pubmed:21694767

Descripteurs français

English descriptors

Abstract

BACKGROUND

Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants.

METHODOLOGY/PRINCIPAL FINDINGS

Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice.

CONCLUSIONS/SIGNIFICANCE

Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species.


DOI: 10.1371/journal.pone.0016907
PubMed: 21694767
PubMed Central: PMC3111414


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.</title>
<author>
<name sortKey="Filichkin, Sergei A" sort="Filichkin, Sergei A" uniqKey="Filichkin S" first="Sergei A" last="Filichkin">Sergei A. Filichkin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Breton, Ghislain" sort="Breton, Ghislain" uniqKey="Breton G" first="Ghislain" last="Breton">Ghislain Breton</name>
</author>
<author>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
</author>
<author>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
</author>
<author>
<name sortKey="Fox, Samuel E" sort="Fox, Samuel E" uniqKey="Fox S" first="Samuel E" last="Fox">Samuel E. Fox</name>
</author>
<author>
<name sortKey="Michael, Todd P" sort="Michael, Todd P" uniqKey="Michael T" first="Todd P" last="Michael">Todd P. Michael</name>
</author>
<author>
<name sortKey="Chory, Joanne" sort="Chory, Joanne" uniqKey="Chory J" first="Joanne" last="Chory">Joanne Chory</name>
</author>
<author>
<name sortKey="Kay, Steve A" sort="Kay, Steve A" uniqKey="Kay S" first="Steve A" last="Kay">Steve A. Kay</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21694767</idno>
<idno type="pmid">21694767</idno>
<idno type="doi">10.1371/journal.pone.0016907</idno>
<idno type="pmc">PMC3111414</idno>
<idno type="wicri:Area/Main/Corpus">002D65</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D65</idno>
<idno type="wicri:Area/Main/Curation">002D65</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D65</idno>
<idno type="wicri:Area/Main/Exploration">002D65</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.</title>
<author>
<name sortKey="Filichkin, Sergei A" sort="Filichkin, Sergei A" uniqKey="Filichkin S" first="Sergei A" last="Filichkin">Sergei A. Filichkin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Breton, Ghislain" sort="Breton, Ghislain" uniqKey="Breton G" first="Ghislain" last="Breton">Ghislain Breton</name>
</author>
<author>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
</author>
<author>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
</author>
<author>
<name sortKey="Fox, Samuel E" sort="Fox, Samuel E" uniqKey="Fox S" first="Samuel E" last="Fox">Samuel E. Fox</name>
</author>
<author>
<name sortKey="Michael, Todd P" sort="Michael, Todd P" uniqKey="Michael T" first="Todd P" last="Michael">Todd P. Michael</name>
</author>
<author>
<name sortKey="Chory, Joanne" sort="Chory, Joanne" uniqKey="Chory J" first="Joanne" last="Chory">Joanne Chory</name>
</author>
<author>
<name sortKey="Kay, Steve A" sort="Kay, Steve A" uniqKey="Kay S" first="Steve A" last="Kay">Steve A. Kay</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Circadian Clocks (genetics)</term>
<term>Circadian Rhythm (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Oryza (genetics)</term>
<term>Photoperiod (MeSH)</term>
<term>Populus (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
<term>Signal Transduction (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acides indolacétiques (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Gènes de plante (génétique)</term>
<term>Horloges circadiennes (génétique)</term>
<term>Oryza (génétique)</term>
<term>Photopériode (MeSH)</term>
<term>Populus (génétique)</term>
<term>Rythme circadien (génétique)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquences d'acides nucléiques régulatrices (génétique)</term>
<term>Transduction du signal (génétique)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Circadian Clocks</term>
<term>Circadian Rhythm</term>
<term>Genes, Plant</term>
<term>Metabolic Networks and Pathways</term>
<term>Oryza</term>
<term>Populus</term>
<term>Promoter Regions, Genetic</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Arabidopsis</term>
<term>Gènes de plante</term>
<term>Horloges circadiennes</term>
<term>Oryza</term>
<term>Populus</term>
<term>Rythme circadien</term>
<term>Régions promotrices (génétique)</term>
<term>Séquences d'acides nucléiques régulatrices</term>
<term>Transduction du signal</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acides indolacétiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Photoperiod</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Photopériode</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21694767</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.</ArticleTitle>
<Pagination>
<MedlinePgn>e16907</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0016907</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Filichkin</LastName>
<ForeName>Sergei A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Breton</LastName>
<ForeName>Ghislain</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Priest</LastName>
<ForeName>Henry D</ForeName>
<Initials>HD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dharmawardhana</LastName>
<ForeName>Palitha</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jaiswal</LastName>
<ForeName>Pankaj</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>Samuel E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Michael</LastName>
<ForeName>Todd P</ForeName>
<Initials>TP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chory</LastName>
<ForeName>Joanne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kay</LastName>
<ForeName>Steve A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mockler</LastName>
<ForeName>Todd C</ForeName>
<Initials>TC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057906" MajorTopicYN="N">Circadian Clocks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002940" MajorTopicYN="N">Circadian Rhythm</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="N">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21694767</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0016907</ArticleId>
<ArticleId IdType="pii">PONE-D-11-00248</ArticleId>
<ArticleId IdType="pmc">PMC3111414</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2002 Apr 30;12(9):757-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12007421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trop Plant Biol. 2008 Dec;1(3-4):236-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Oct;85(19):7089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2902624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 May;2(5):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Jan;48(1):110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17132630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1926-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):45-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1995 Dec;20(12):506-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8571452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 7;302(5647):1049-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14605371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jan 22;19(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 13;323(5920):1481-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2007;72:353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3257-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1500-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7878008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Feb;4(2):e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Aug;5(8):e222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(8):R130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 May;170(1):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1605-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Oct;12(5):643-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 3;293(5531):880-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11486091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 May 15;22(10):1286-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16551659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Nov;9(11):3415-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2209551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 Jan;1(1):58-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;678:247-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20931385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6878-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1960;25:11-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13684695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):627-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Breton, Ghislain" sort="Breton, Ghislain" uniqKey="Breton G" first="Ghislain" last="Breton">Ghislain Breton</name>
<name sortKey="Chory, Joanne" sort="Chory, Joanne" uniqKey="Chory J" first="Joanne" last="Chory">Joanne Chory</name>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<name sortKey="Fox, Samuel E" sort="Fox, Samuel E" uniqKey="Fox S" first="Samuel E" last="Fox">Samuel E. Fox</name>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<name sortKey="Kay, Steve A" sort="Kay, Steve A" uniqKey="Kay S" first="Steve A" last="Kay">Steve A. Kay</name>
<name sortKey="Michael, Todd P" sort="Michael, Todd P" uniqKey="Michael T" first="Todd P" last="Michael">Todd P. Michael</name>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
</noCountry>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Filichkin, Sergei A" sort="Filichkin, Sergei A" uniqKey="Filichkin S" first="Sergei A" last="Filichkin">Sergei A. Filichkin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21694767
   |texte=   Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21694767" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020